
Object Oriented Programming in PHP5
A WebApp Tutorial

Adrian Giurca
Chair of Internet Technology, Institute for Informatics

October 15, 2006

Revision History
Sept 20, 2005Revision 1
Sept 13, 2006Revision 2

Table of Contents
1. Basic PHP Constructs for OOP .. 2
2. Advanced OOP Features .. 4

2.1. Public, Private, and Protected Members .. 4
2.2. Interfaces .. 5
2.3. Constants .. 5
2.4. Abstract Classes ... 5
2.5. Simulating class functions .. 5
2.6. Calling parent functions ... 6

2.6.1. Calling parent constructors .. 6
2.6.2. The special name parent .. 7

2.7. Serialization .. 7
2.8. Introspection Functions ... 8

3. OOP Style in PHP. The PEAR Coding Style ... 12
3.1. Indenting, whitespace, and line length .. 13
3.2. Formatting control structures .. 13
3.3. Formatting functions and function calls ... 14
3.4. PHPDoc ... 14

Bibliography ... 15

How "object-oriented" is PHP?

Let's try an answer:

• Single inheritance. PHP allows a class definition to inherit from another class, using the extends clause. Both
member variables and member functions are inherited.

• Multiple inheritance. PHP offers no support for multiple inheritance and no notion of interface inheritance as
in Java. Each class inherits from, at most, one parent class (though a class may implement many interfaces).

• Constructors. Every class can have one constructor function, which in PHP is called __construct(). Note
that there are two underscore characters at the front of that function name. Constructors of parent classes are
not automatically called but must be invoked explicitly.

• Destructors. PHP supports explicit destructor functions as of version 5. The destructor function of a class is
always called __destruct().

• Encapsulation/access control. PHP supports public, private, and protected properties and methods as of version
5.

1

About this document
This document has been generated with RenderX XEP.					Visit http://www.renderx.com/ to learn more about					RenderX family of software solutions for digital					typography.

• Polymorphism/overloading. PHP supports polymorphism in the sense of allowing instance of subclasses to be
used in place of parent instances. The correct method will be dispatched to at runtime. There is no support for
method overloading, where dispatch happens based on the method's signature-each class only has one method
of a given name.

• Static (or class) functions. PHP offers static properties and static methods as of version 5. It is also possible
to call methods via the Classname::function() syntax.

• Introspection. PHP offers a wide variety of functions here, including the capability to recover class names,
methods names, and properties names from an instance.

In the next section, we cover the basic PHP syntax for OOP from the ground up, with some simple examples.

1. Basic PHP Constructs for OOP
The general form for defining a new class in PHP is as follows:

class MyClass extends MyParent {
 var $var1;
 var $var2 = "constant string";
 function myfunc ($arg1, $arg2) {
 //...
 }
 //...
}

As an example, consider the simple class definition in the listing below, which prints out a box of text in HTML:

class TextBoxSimple {
 var $body_text = "my text";
 function display() {
 print("<table><tr><td>$this->body_text");
 print(“</td></tr></table>");
 }
}

In general, the way to refer to a property from an object is to follow a variable containing the object with -> and
then the name of the property. So if we had a variable $box containing an object instance of the class TextBox,
we could retrieve its body_text property with an expression like:

$text_of_box = $box->body_text;

Notice that the syntax for this access does not put a $ before the property name itself, only the $this variable.

After we have a class definition, the default way to make an instance of that class is by using the new operator.

$box = new TextBoxSimple;
$box->display();

The correct way to arrange for data to be appropriately initialized is by writing a constructor function-a special
function called __construct(), which will be called automatically whenever a new instance is created.

class TextBox {
 var $bodyText = "my default text";
 // Constructor function
 function __construct($newText) {
 $this->bodyText = $newText;
 }
 function display() {
 print("<table><tr><td>$this->bodyText");
 print(“</td></tr></table>");
 }
}

// creating an instance

2

Object Oriented Programming in PHP5

$box = new TextBox("custom text");
$box->display();

PHP class definitions can optionally inherit from a superclass definition by using the extends clause. The effect
of inheritance is that the subclass has the following characteristics:

• Automatically has all the property declarations of the superclass.

• Automatically has all the same methods as the superclass, which (by default) will work the same way as those
functions do in the superclass.

In addition, the subclass can add on any desired properties or methods simply by including them in the class
definition in the usual way.

class TextBoxHeader extends TextBox{
 var $headerText;
 // CONSTRUCTOR
 function __construct($newHeaderText, $newBodyText) {
 $this->headerText = $newHeaderText;
 $this->bodyText = $newBodyText;
 }
 // MAIN DISPLAY FUNCTION
 function display() {
 $header_html = $this->make_header($this->headerText);
 $body_html = $this->make_body($this->bodyText);
 print("<table><tr><td>\n");
 print("$header_html\n");
 print("</td></tr><tr><td>\n");
 print("$body_html\n");
 print("</td></tr></table>\n");
 }
 // HELPER FUNCTIONS
 function make_header ($text) {
 return($text);
 }
 function make_body ($text) {
 return($text);
 }
}

Function definitions in subclasses override definitions with the same name in superclasses. This just means that
the overriding definition in the more specific class takes precedence and will be the one actually executed.

Before we move onto the more advanced features of PHP's version of OOP, it's important to discuss issues of
scope—that is, which names are meaningful in what way to different parts of our code. It may seem as though the
introduction of classes, instances, and methods have made questions of scope much more complicated. Actually,
though, there are only a few basic rules we need to add to make OOP scope sensible within the rest of PHP:

• Names of properties and methods are never meaningful to calling code on their own-they must always be
reached via the -> construct. This is true both outside the class definition and inside methods.

• The names visible within methods are exactly the same as the names visible within global functions-that is,
methods can refer freely to other global functions, but can't refer to normal global properties unless those
properties have been declared global inside the method definition.

These rules, together with the usual rules about variable scope in PHP, are respected in the intentionally confusing
example in the listing below. What number would you expect that code to print when executed?

$myGlobal = 3;
function myFunction ($myInput) {
 global $myGlobal;
 return($myGlobal * $myInput);
}

class MyClass {
 var $myProperty;

3

Object Oriented Programming in PHP5

 function __construct($myConstructorInput) {
 $this->myProperty = $myConstructorInput;
 }
 function myMethod ($myInput) {
 global $myGlobal;
 return($myGlobal * $myInput * myFunction($this->myProperty));
 }
}

$myInstance = new MyClass(4);
print("The answer is: ".$myInstance->myMethod(5));

The answer is: 180 (or 3 * 5 * (3 * 4)). If any of these numerical variables had been undefined when multiplied,
we would have expected the variable to have a default value of 0, making the answer have a value of 0 as well.
This would have happened if we had:

• Left out the global declaration in myFunction()

• Left out the global declaration in myMethod()

• Referred to $myProperty rather than $this->myProperty

2. Advanced OOP Features

2.1. Public, Private, and Protected Members

Unless you specify otherwise, properties and methods of a class are public. That is to say, they may be accessed
in three possible situations:

• From outside the class in which it is declared;

• From within the class in which it is declared;

• From within another class that implements the class in which it is declared;

If you wish to limit the accessibility of the members of a class, you should use private or protected.

By designating a member private, you limit its accessibility to the class in which it is declared. The private member
cannot be referred to from classes that inherit the class in which it is declared and cannot be accessed from outside
the class.

class MyClass {
 private $colorOfSky = "blue";
 $nameOfShip = "Java Star";
 function __construct($incomingValue) {
 // Statements here run every time an instance of the class
 // is created.
 }
 function myPublicFunction ($myInput) {
 return("I'm visible!");
 }
 private function myPrivateFunction ($myInput) {
 global $myGlobal;
 return($myGlobal * $myInput * myFunction($this->myProperty));
 }
}

A protected property or method is accessible in the class in which it is declared, as well as in classes that extend
that class. Protected members are not available outside of those two kinds of classes, however.

class MyClass {
 protected $colorOfSky = "blue";
 $nameOfShip = "Java Star";
 function __construct($incomingValue) {
 // Statements here run every time an instance

4

Object Oriented Programming in PHP5

 // of the class is created.
 }
 function myPublicFunction ($myInput) {
 return("I'm visible!");
 }
 protected function myProtectedFunction ($myInput) {
 global $myGlobal;
 return($myGlobal * $myInput * myFunction($this->myProperty));
 }
}

2.2. Interfaces

In large object-oriented projects, there is some advantage to be realized in having standard names for methods that
do certain work. In PHP5, it is also possible to define an interface, like this:

interface Mail {
 public function sendMail();
}

then, if another class implemented that interface, like this:

class Report implements Mail {
 // Definition goes here
}

it would be required to have a method called sendMail. It's an aid to standardization.

2.3. Constants

A constant is somewhat like a variable, in that it holds a value, but is really more like a function because a constant
is immutable. Once you declare a constant, it does not change.

class MyClass {
 const REQUIRED_MARGIN = 1.3;
 function __construct($incomingValue) {
 // Statements here run every time an instance of the class
 // is created.
 }
}

In that class, REQUIRED_MARGIN is a constant. It is declared with the keyword const, and under no circumstances
can it be changed to anything other than 1.3. Note that the constants name does not have a leading $, as variable
names do.

2.4. Abstract Classes

An abstract class is one that cannot be instantiated, only inherited. You declare an abstract class with the keyword
abstract, like this:

abstract class MyAbstractClass {
 abstract function myAbstractFunction() {
 }
}

Note that function definitions inside an abstract class must also be preceded by the keyword abstract. It is not
legal to have abstract function definitions inside a non-abstract class.

2.5. Simulating class functions

Some other OOP languages make a distinction between instance properties, on the one hand, and class or static
properties on the other. Instance properties are those that every instance of a class has a copy of (and may possibly
modify individually); class properties are shared by all instances of the class. Similarly, instance methods depend

5

Object Oriented Programming in PHP5

on having a particular instance to look at or modify; class (or static) methods are associated with the class but are
independent of any instance of that class.

In PHP, there are no declarations in a class definition that indicate whether a function is intended for per-instance
or per-class use. But PHP does offer a syntax for getting to functions in a class even when no instance is handy.
The :: syntax operates much like the -> syntax does, except that it joins class names to member functions rather
than instances to members. For example, in the following implementation of an extremely primitive calculator,
we have some methods that depend on being called in a particular instance and one methods that does not:

class Calculator{
 var $current = 0;
 function add($num) {
 $this->current += $num;
 }
 function subtract($num) {
 $this->current -= $num;
 }
 function getValue() {
 return($current);
 }
 function pi() {
 return(M_PI); // the PHP constant
 }
}

We are free to treat the pi() methods as either a class methods or an instance methods and access it using either
syntax:

$calcInstance = new Calculator;
$calcInstance->add(2);
$calcInstance->add(5);
print("Current value is ".$calcInstance->current ."
");
print("Value of pi is ".$calcInstance->pi()."
");
print("Value of pi is ".Calculator::pi()."
");

This means that we can use the pi() function even when we don't have an instance of Calculator at hand.

2.6. Calling parent functions

Asking an instance to call a function will always result in the most specific version of that function being called,
because of the way overriding works. If the function exists in the instance's class, the parent's version of that
function will not be executed.

Sometimes it is handy for code in a subclass to explicitly call functions from the parent class, even if those names
have been overridden. It's also sometimes useful to define subclass functions in terms of superclass functions, even
when the name is available.

2.6.1. Calling parent constructors

Look to the following example:

class Name{
 var $_firstName;
 var $_lastName;
 function Name($first_name, $last_name){
 $this->_firstName = $first_name;
 $this->_lastName = $last_name;
 }
 function toString() {
 return($this->_lastName.", ".$this->_firstName);
 }
}

class NameSub1 extends Name{
 var $_middleInitial;

6

Object Oriented Programming in PHP5

 function NameSub1($first_name, $middle_initial, $last_name) {
 Name::Name($first_name, $last_name);
 $this->_middleInitial = $middle_initial;
 }
 function toString() {
 return(Name::toString()." " .$this->_middleInitial);
 }
}

In this example, we have a superclass (Name), which has a two-argument constructor, and a subclass (NameSub1),
which has a three-argument constructor. The constructor of NameSub1 functions by calling its parent constructor
explicitly using the :: syntax (passing two of its arguments along) and then setting an additional property. Similarly,
NameSub1 defines its nonconstructor toString() function in terms of the superclass function that it overrides.

It might seem strange to call Name::Name() here, without reference to $this. The good news is that both $this
and any member variables that are local to the superclass are available to a superclass method when invoked from
a subclass instance.

2.6.2.The special name parent

There is a stylistic objection to the previous example, which is that we have hardcoded the name of a superclass
into the code for a subclass. Some would say that this is bad style because it makes it harder to revise the class
hierarchy later. A fix is to use the special name parent, which when used in a method, always refers to the superclass
of the current class. Here is a revised version of the example using parent rather than Name:

class NameSub2 extends Name{
 var $_middleInitial;
 function NameSub2($firstName, $middleInitial,$lastName) {
 $parentClass = get_parent_class($this);
 parent::$parentClass($firstName, $lastName);
 $this->_middleInitial = $middleInitial;
 }
 function toString() {
 return(parent::toString()." ".$this->_middleInitial);
 }
}

2.7. Serialization

Serialization of data means converting it into a string of bytes in such a way that you can produce the original data
again from the string (via a process known, unsurprisingly, as unserialization). After you have the ability to seri-
alize/unserialize, you can store your serialized string pretty much anywhere (a system file, a database, and so on)
and recreate a copy of the data again when needed.

PHP offers two functions, serialize() and unserialize(), which take a value of any type (except type resource)
and encode the value into string form and decode again, respectively.

Here is a quick example, which we'll extend later in this section:

class ClassToSerialize {
 var $storedStatement = "data";
 function __construct($statement) {
 $this->storedStatement = $statement;
 }
 function display (){
 print($this->storedStatement."
");
 }
}

$instance1 = new ClassToSerialize("You're objectifying me!");
$serialization = serialize($instance1);
$instance2 = unserialize($serialization);
$instance2->display();

7

Object Oriented Programming in PHP5

This class has just one property and a couple of methods, but it's sufficient to demonstrate that both properties and
methods can survive serialization.

PHP provides a hook mechanism so that objects can specify what should happen just before serialization and just
after unserialization. The special member function __sleep() (that’s two underscores before the word sleep), if
defined in an object that is being serialized, will be called automatically at serialization time. It is also required to
return an array of the names of variables whose values are to be serialized. This offers a way to not bother serial-
izing member variables that are not expected to survive serialization anyway (such as database resources) or that
are expensive to store and can be easily recreated. The special function __wakeup() (again, two underscores) is
the flip side-it is called at unserialization time (if defined in the class) and is likely to do the inverse of whatever
is done by __sleep() (restore database connections that were dropped by __sleep() or recreate variables that
__sleep() said not to bother with).

class ClassToSerialize2 {
 var $storedStatement = "data";
 var $easilyRecreatable = “data again”;
 function __construct($statement) {
 $this->storedStatement = $statement;
 $this->easilyRecreatable = $this->storedStatement." Again!";
 }
 function __sleep() {
 // Could include DB cleanup code here
 return array('storedStatement');
 }
 function __wakeup() {
 // Could include DB restoration code here
 $this->easilyRecreatable =$this->storedStatement." Again!";
 }
 function display (){
 print($this->easilyRecreatable."
");
 }
}

$instance1 = new ClassToSerialize2("You're objectifying me!");
$serialization = serialize($instance1);
$instance2 = unserialize($serialization);
$instance2->display();

The serialization mechanism is pretty reliable for objects, but there are still a few things that you must know:

• The code that calls unserialize() must also have loaded the definition of the relevant class. (This is also true
of the code that calls serialize() too, of course, but that will usually be true because the class definition is
needed for object creation in the first place.)

• Object instances can be created from the serialized string only if it is really the same string (or a copy thereof).
A number of things can happen to the string along the way, if stored in a database (make sure that slashes aren't
being added or subtracted in the process), or if passed as URL or form arguments. (Make sure that your URL-
encoding/decoding is preserving exactly the same string and that the string is not long enough to be truncated
by length limits.)

• If you choose to use __sleep(), make sure that it returns an array of the variables to be preserved; otherwise
no variable values will be preserved. (If you do not define a __sleep() function for your class, all values will
be preserved.)

See also the current manual for new changes.

2.8. Introspection Functions

Introspection allows the programmer to ask objects about their classes, ask classes about their parents, and find
out all the parts of an object without have to crunch the source code to do it. Introspection also can help you to
write some surprisingly flexible code, as we will see.

8

Object Oriented Programming in PHP5

Table 1. Class/Object Functions

As of PHP VersionOperates on In-
stances

Operates on Class
Names

DescriptionFunction

4.0.0YesNoReturns the name of
the class an object be-
longs to.

get_class()

4.0.0YesYes(as of PHP 4.0.5
instance or class.
v.4.0.5)

Returns the name of
the superclass of the
given

get_parent_class()

4.0.0NoYesReturns TRUE if the
string argument is the

class_exists()

name of a class,
FALSE otherwise.

4.0.0N/AN/AReturns an array of
strings representing

g e t _ d e -

clared_classes()

names of classes
defined in the current
script.

4.0.0YesNoReturns TRUE if the
class of its first argu-

is_subclass_of()

ment (an object in-
stance) is a subclass
of the second argu-
ment (a class name),
FALSE otherwise.

4.2.0YesNoReturns TRUE if the
class of its first argu-

is_a()

ment (an object in-
stance) is a subclass
of the second argu-
ment (a class name),
or is the same class,
and FALSE otherwise.

4.0.0NoYesReturns an associative
array of var/value

get_class_vars()

pairs representing the
name of variables in
the class and their de-
fault values. Variables
without default values
will not be included.

4.0.0YesNoReturns an associative
array of var/value

get_object_vars()

pairs representing the
name of variables in
the instance and their
default values. Vari-
ables without values
will not be included.

9

Object Oriented Programming in PHP5

As of PHP VersionOperates on In-
stances

Operates on Class
Names

DescriptionFunction

4.0.0YesNoReturns TRUE if the
first argument (an in-
stance) has a method
named by the second
argument (a string)
and FALSE otherwise.

method_exists()

4.0.0YesNoTakes a string repres-
enting a method
name, an instance that
should have such a
method, and addition-
al arguments. Returns
the result of applying
the method (and the
arguments) to the in-
stance.

get_class_meth-

ods()

4.0.0YesNoTakes a string repres-
enting a method
name, an instance that
should have such a
method, and addition-
al arguments. Returns
the result of applying
the method (and the
arguments) to the in-
stance.

call_user_method()

4.0.5YesNoS a m e a s
call_user_meth-

od(), except that it
expects its third argu-
ment to be an array
containing the argu-
ments to the method.

call_user_method

_array()

10

Object Oriented Programming in PHP5

Example 1. Matching variables and DB columns

One frequent use for PHP objects in database-driven systems is as a wrapper around the entire database API. The
theory is that the wrapper insulates the code from the specific database system, which will make it trivial to swap
in a different RDBMS when the technical needs change.

Another use that is almost as common (and that your authors like better) is to have object instances correspond to
database result rows. In particular, the process of reading in a result row looks like instantiating a new object that
has member variables corresponding to the result columns we care about, with extra functionality in the member
functions. As long as the fields and columns match up (and as long as you can afford object instantiation for every
row), this can be a nice abstraction away from the database.

A repetitive task that arises when writing this kind of code is assigning database column values to member variables,
in individual assignment statements. This feels like it should be unnecessary, especially when the columns and the
corresponding variables have exactly the same names. In this example, we try to automate this process.

Let's start with an actual database table. Following are the MySQL statements necessary to create a simple table
and insert one row into it:

mysql> create table book
(id int not null primary key auto_increment,
author varchar(255), title varchar(255),
publisher varchar(255));
mysql> insert into book (author, title, publisher)
values ("Robert Zubrin", "The Case For Mars","Touchstone");

Because the id column is auto-incremented, it will happen to have the value 1 for this first row.

Now, let's say that we want a Book object that will exactly correspond to a row from this table, with fields corres-
ponding to the DB column names. There's no way around actually defining the variable names (because PHP
doesn't let us dynamically add variables to classes), but we can at least automate the assignment.

The code in listing below assumes a database called oop with the table created as above, and also that we have a
file called dbconnect_vars that sets $host, $user, and $pass appropriately for our particular MySQL setup (the
code assumes the connection works, that the row was retrieved successfully, and so on). The main point we want
to highlight is the hack in the middle of the Book constructor.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Books</title>
 <?php
 include_once("dbconnect_vars.php");
 class Book{
 var $id;
 // variables corresponding to DB columns
 var $author = "DBSET";
 var $title = "DBSET";
 var $publisher = "DBSET";
 function __construct($db_connection, $id) {
 $this->id = $id;
 $query = "select * from book "."where id = $id";
 $result = mysql_query($query, $db_connection);
 $db_row_array = mysql_fetch_array($result);
 $class_var_entries = get_class_vars(get_class($this));
 while ($entry = each($class_var_entries)) {
 $var_name = $entry['key'];
 $var_value = $entry['value'];
 if ($var_value == "DBSET") {
 $this->$var_name = $db_row_array[$var_name];
 }
 }
 }
 function toString () {

11

Object Oriented Programming in PHP5

 $return_string = "BOOK
";
 $class_var_entries = get_class_vars(get_class($this));
 while ($entry = each($class_var_entries)) {
 $var_name = $entry[‘key’];
 $var_value = $this->$var_name;
 $return_string .="$var_name: $var_value
";
 }
 return($return_string);
 }
 }

 $connection = mysql_connect($host, $user, $pass) or die("Could not connect to DB");
 mysql_select_db("oop");
?>
 </head>
<body>
 <?php
 $book = new Book($connection, 1);
 $book_string = $book->toString();
 echo $book_string; ?>
</body>
</html>

The database query returns all columns from the book table, and the values are indexed in the result array by the
column names. The constructor then uses get_class_vars() to discover all the variables that have been set in
the object, tests them to see if they have been bound to the string "DBSET", and then sets those variables to the
value of the column of the same name. The result is the output:

BOOK
Author: Robert Zubrin
Title: The Case For Mars
Publisher: Touchstone

3. OOP Style in PHP.The PEAR Coding Style
We offer in the following some brief notes on writing readable, maintainable PHP OOP code. For more information
on the coding style, see the PEAR Web site (at http://pear.php.net).

PEAR recommends that class names begin with an uppercase letter and (if in a PEAR approved directory hierarchy
of packages) have that inclusion path in the class name, separated by underscores. So your class that counts words,
and which belongs to a PEAR package called TextUtils, might be called TextUtils_WordCounter. If building
large OOP packages, you may want to emulate this underscore convention with your own package names; otherwise
you can simply give your classes names like WordCounter.

Member variables and member function names should have their first real letter be lowercase and have word
boundaries be delineated by capitalization. In addition, names that are intended to be private to the class (that is,
they are used only within the class, and not by outside code) should start with an underscore. So the variable in
your WordCounter class that holds the count of words might be called wordCount (if intended to be messed with
from the outside) or _wordCount (if intended to be private to the class).

Another style of documenting your intent about use of internal variables is to have your variables marked as private,
in general, and provide "getter" and "setter" functions to outside callers. For example, we might define a class like
this:

class Customer{
 private var _name; // comments come here
 private var _creditCardNumber;
 private var _rating;

 /*
 * Comments come here
 */
 function getName (){
 return($this->_name);
 }

12

Object Oriented Programming in PHP5

http://pear.php.net

 function getRating (){
 return($this->_rating);
 }

 function setRating($rating){
 $this->_rating = $rating;
 }
[... more functions]
}

3.1. Indenting, whitespace, and line length

Code is much easier to read if you use indentation to indicate the relationship among lines of code that are tied
together in a common functional block, as well as whitespace to logically group elements.

Another issue is the number of spaces to indent each new code block—some people insist that two saves space,
others swear by four, and some outliers actually employ eight-space indents (the horror!). If you want your code
to be accepted into PEAR, it must use four-space indents. Because different editors on different platforms interpret
tab characters differently, it's recommended that you use groups of four space characters in all places you would,
under other circumstances, use a tab character.

Table 2. Indenting, whitespace, and line length

YesNo

switch ($flag) {

 case 1:
 doWork();
 break;

 case 2:
 doOtherWork();
 break;

 default:
 doNothing();
 break;
}

switch ($flag) {
case 1:
doWork();
break;
case 2:
doOtherWork();
break;
default:
doNothing();
break;
}

3.2. Formatting control structures

Control structures—like if, if/else, if/elseif, and switch statements—can be confusing if not properly formatted.
PEAR has recommended styles for all of these language constructs.

13

Object Oriented Programming in PHP5

Table 3. Formatting control structures

Formatting recommendationStructure

if ((condition1) && (condition2)) {
 doSomething();
}

if Statements

if((condition1) && (condition2)){
 doSomething();
} else {
 doSomethingElse();
}

The else appears on the same line as the closing bracket
that terminates the if block.

if/else Statements

if((condition1) && (condition2)){
 doSomething();
} elseif {
 doSomethingElse();
}

if/elseif Statements

switch ($flag) {

 case 1:
 doWork();
 break;

 case 2:
 doOtherWork();
 break;

 default:
 doNothing();
 break;
}

switch Statements

3.3. Formatting functions and function calls

Much of PHP is concerned with defining functions, then making calls to them; and obviously code libraries like
PEAR will be almost all functions. Properly formatting your functions can make it more obvious what’s going on
and can therefore make debugging and maintenance easier.

The PEAR style rules mandate that functions be defined with both their beginning and ending braces flush with
the left margin, like this:

function myFunction(){
// Function code goes here.
}

Personally, I prefer another variant that seems to be more complete for me and also save space.

/*
 * Comments goes here
 */
function myFunction(){
 // Function code goes here.
}

3.4. PHPDoc

For very large and complex programs, code-embedded comments are not sufficient. You want separate document-
ation that someone can read without delivering into the code itself.

14

Object Oriented Programming in PHP5

For example, if you have followed a given commenting convention, you can point the javadoc tool at your Java
code and it will extract class and method comments into a set of HTML pages documenting the API. This is a
solution for the problem of keeping docs in sync with code. (It will break down, for example, if people begin
writing new methods by copying old methods, and leaving the original comments in place.) But at least developers
have to write only one description of a given method rather than two.

There is an analogous phpdoc tool that uses PHP (naturally) to scan PHP code for special comments, producing
HTML output. For more on phpdoc, see www.phpdoc.de/.

Bibliography
PHP web site, http://www.php.net

PEAR web site, http://www.pear.php.net

Tim Converse,Joyce Park, Clark Morgan, PHP5 and MySQL Bible, Wiley Publishing, Inc., 2004.

David Sklar, Learning PHP 5, O'Reilly 2004.

David Lane, Hugh E. Williams , Web Database Application with PHP and MySQL, 2nd Edition, O'Reilly 2004.

15

Object Oriented Programming in PHP5

www.phpdoc.de/

