

$someVariable = new SomeClassDefiningAnObject;

$someVariable->someMethod ($someArgumentJustLikeARegularFunction);

$returnValue = $someVariable->someMethodThatReturnsSomething();

$someVariable->someProperty = "SomeValue”;
$currentValue = $someVariable->someProperty;

class Dog

{
public $hungry = “hell yeah.";

function eat($food)
{

$this->hungry = "not so much.";

[}
o

$dog = new Dog;

echo $dog->hungry;

$dog->eat("cookie”);

echo $dog->hungry;

class Animal
{
public $hungry = "hell yeah.";
function eat($food)
{
$this->hungry = "not so much.";
}
}
class Dog extends Animal
{
function eat($food)
{
if($food == “cookie™)
{
$this->hungry = "not so much.";
}
else
{
echo "barf, 1 only like cookies!";
}
}
+

Method eat is overridden, because doggie only likes cookies. But, because all animals are hungry when you
don't feed them, the initial state of $hungry need not be defined in Dog. The fictional Bird, Cat and Piggy
could all extend Animal.

Class Animal is unaware of the fact that it is being extended; there are no references to Dog whatsoever.
Say Animal extended another class called LifeForm, and | instantiated Animal, only methods and properties
of Animal and LifeForm would be included in the object.

2.3 Constructors

Constructors are a way to define the default behaviour (set the default state) upon instantiation. You can, as
shown in the previous example, define the default state by setting default values for properties. A
constructor is nothing more than a method that is executed when instantiating an object. This is referred to
as initializing the object.

An object isn’t fully initialized, constructed, until the constructor method has completed (if present). A
constructor method isn’t required, our previous examples worked just fine without them. Another thing that
should be noted is that only the constructor of the class used to instantiate is called automatically, any
parent constructors need to be called explicitly.

PHP 5 uses the __construct magic method. You can use the name of the class as well, but this is only for
backwards compatibility, and will throw an error if you have E_STRICT error reporting enabled (which you
should have).

class Dog extends Animal

{

public $breed;

function __ construct($breed)

{
$this->breed = $breed;

}
function eat($food)
{
if($food == "cookie")
{
$this->hungry = "not so much.";
}
else
{
echo "barf, 1 only like cookies!";
}
}

}

Instantiating a Dog requires us to specify it's breed. The property breed is assigned a new value by cause of
this initialization (previously NULL), and we have a Dog which initial state specifies it's breed:

$dog = new Dog("Golden Retriever®);

We could change its breed afterwards if we'd like:

$dog->breed = "Bloodhound®;

2.4 Scope Resolution Operator

Officially called Paamayim Nekudotayim (Hebrew for double colon, now you know what the parser is talking
about when you get errors), the scope resolution operator (::) allows you to perform static calls to methods
and class members.

Static methods can be called without instantiation of an object. This can be useful both inside a class
declaration (within an object hierarchy) as outside of it.

After an object is created, some reference to the overwritten methods and properties remains intact. One
can access these methods from within the object statically (no new instantiation is required, yet the object
from within you are operating is still affected.).

class Animal

{
public $hungry = "hell yeah.";

function __construct()

{

echo "1 am an animal.";

}

function eat($food)
{

$this->hungry = "not so much.";

}

}
class Dog extends Animal
{
public $breed;
function __ construct($breed)
{
$this->breed = $breed;
Animal:: _ construct();
}
function eat($food)
{
if($food == "cookie")
{
Animal : :eat($food) ;
}
else
{
echo "barf, 1 only like cookies!";
}
}
}
$dog = new Dog(“Rotweiler®);
$dog->eat("cookie”);
echo $dog->hungry;

Dog is using its parent’'s method eat to refer to the declaration of eat that was overwritten by its own
declaration of eat. You need not specify the specific class name like in the above example to refer to the last
declaration of a method (or property), the parent keyword will point to that reference:

parent: :eat($food) ;

Should you have multiple levels of inheritance, and want to address a declaration other than the one last
defined, you'll have to specify the class like in the above example class.

The constructor of parent classes is called upon instantiation, unless it is overridden. We override
__construct(), so if we desire to run a parent constructor, we have to call it explicitly:

Animal::__construct();

Trying to call a method statically which has references to object specific variables (makes use of $this) from
outside of the object, will throw an error:

Dog: zeat("cookie™);

Result:
Fatal error: Using $this when not in object context

PHP 5 features static class members. It requires you to define what methods and properties can be used
statically. Static properties work the same as regular static variables, if you are unfamiliar with static
variables, have a thorough read on Variable Scope in the manual.

class Dog

{
static $hungry = "hell yeah.";

static function eat($food)

{
if($food == “cookie™)
{
self: :$hungry = "not so much.";
37
else
{
echo "barf, 1 only like cookies!";
37
be

}
Dog: :eat("cookie”);
echo Dog: :$hungry;

Note the self keyword. It is simply referring to this class declaration. Like with the parent keyword,
alternatively one could use the actual name of the class (Dog).

2.5 Abstract Classes

Abstract classes are, well, abstract. An abstract class isn’'t intended to be instantiated, but to serve as a
parent to other classes, partly dictating how they should behave. Abstract classes can have abstract
methods, these are required in the child classes.

Abstract classes can be used to enforce a certain interface.

An example:

abstract class Animal

{
public $hungry = "hell yeah.";
abstract public function eat($food);
}
class Dog extends Animal
{
function eat($food)
{
if($food == "cookie")
{
$this->hungry = "not so much.";
}
else

{

echo "barf, 1 only like cookies!";

}
37
$dog = new Dog();
echo $dog->hungry; //echoes "hell yeah."
$dog->eat(“peanut™); //echoes "barf, I only like cookies!"

3 Beyond the Absolute Basics
3.1 Object Handles

In PHP5, objects are defined by handles, not unlike resource type variables.
Passing an object to a function doesn’t make a copy of it. Have a read on References Explained if you're still
a little confused by this.

3.2 Interfaces

PHPS5 features interfaces. Not to be confused with interfaces in the more general sense, the interface
keyword creates an entity that can be used to enforce a common interface upon classes without having to
extend them like with abstract classes. Instead an interface is implemented.

Interfaces are different from abstract classes. For one, they're not actually classes. They don't define
properties, and they don’t define any behaviour. The methods declared in an interface must be declared in
classes that implement it.

Because an interface in the more general sense is a definition of how an object interacts with other code, all
methods must be declared public (see section on visibility in this chapter). Using abstract classes, an
abstract method can have any visibility, but the extending classes must have their implementations use the
same (or weaker) visibility. Implementing an interface adds the methods as abstract methods to the subject
class, failure to implement it will result in an error like the following:

Fatal error: Class SomeConcreteClass contains n abstract method(s) and
must therefore be declared abstract or implement the remaining
methodsYes, abstract classes can implement interfaces.

Interfaces can be looked upon as a contract, a certificate of compliance if you will. Other code is guaranteed
that a class implementing it will use certain methods to interact.

Enough babbling, let's see a code example:

interface Animal

{

public function eat($food);
b
interface Mammal
{

public function giveBirth();
b
class Dog implements Animal, Mammal
{

public $gender = "male®;

function eat($food)
{

if($food == "cookie™)

{
$this->hungry = "not so much.";
}
else
{
echo "barf, 1 only like cookies!";
}
}
function giveBirth()
{
if($this->gender == "male”)
{
echo "1 can\"t, 1 am a boy :P-;
}
else
{
echo "I\"m not even pregnant yet.";
}
}
+

Doggie implements 2 interfaces, both Animal and Mammal. You can implement as many interfaces as you
like.

3.3 Autoload

A very convenient feature, __autoload allows you to get rid of all those annoying includes that need to be
managed. This magic function will execute whenever a class or interface is referenced that hasn’t been

defined. That gives you the opportunity to include it.
Here’s a simple example of how that might look using the standard PEAR naming scheme (the segments
between underscores become directory names, bar the last, which becomes the filename):

function __ autoload($className)
{
$file = str_replace("_", DIRECTORY_SEPARATOR, $className) .
* php*:
if(Ifile_exists($Ffile))
{
return false;
bs
else
{
require_once $file;
bs
}
new Foo_Bar(); //Maps to “Foo/Bar.php’

We don't really need require_once, because once the file is included, __autoload will not trigger on that
class or interface reference again.

class Example

{
private $ name;
public function __ construct($name)
{
$this-> name = $name;
}
function _ _destruct()
{
echo "Destructing object "$this->_name
}
}
$objectOne = new Example(“Object one®);

$objectTwo = new Example(“Object two");
unset($objectOne) ;
echo "Script still running.® . PHP_EOL;

class Teeth

{

protected $ colour = “white";

. PHP_EOL:

public function stain()
{
$this->_colour = “yellow";
}
3
class Dog
{
public $teeth;
public function __ construct()
{
$this->teeth = new Teeth();
3
public function eat($food)
{
if($food == “cookie™)
{
$this->hungry = "not so much.";
//Attempt to turn teeth green:
$this->teeth->_colour = "green”;
}
else
{
echo "barf, I only like cookies!";
}
}
}
$dog = new Dog();

Class constants are just regular constants, declared in a class. It’'s reference is obtained through the class
scope. Because constants are unchangeable, they are independent of any state the object could be in.
Therefore they can only be called statically.

class Dog

{
const NUMBER_OF_LEGS = "4°%;

public function __ construct()

{
echo "1 have "_self::NUMBER_OF LEGS." legs,
and you can\"t take that away from mel!l";

}

37
$dog = new Dog();

Both $dog->NUMBER_OF_LEGS and $this->NUMBER_OF_LEGS would have PHP looking for a non-
existent object property: SNUMBER_OF_LEGS.

Class constants are always publicly accessible. Any code can call Dog::NUMBER_OF _LEGS.

3.7 Type Hinting

PHP 5 features type hinting as a means to limit the types of variables that a method will accept as an
argument. Let's kick off with a simple example:

class Rabbit

{3
class Feeder
{
public function feedRabbit(Rabbit $rabbit, $food)
{
$rabbit->eat($food);
37
}

$dog = new Dog();
$feeder = new Feeder();
$feeder->feedRabbit($dog, “broccoli®);

Attempting to use an instance of Dog with the feedRabbit method results in the following error:
Fatal error: Argument 1 passed to Feeder::feedRabbit() must be an
instance of Rabbit

However, type hinting allows a more generic use. Consider the following example:

class Animal

{3

class Feeder

{

public function feedAnimal(Animal $animal, $food)

{

$animal->eat($food) ;

}
}
class Dog extends Animal
{
public function eat($food)
{
if($food == "cookie")
{
$this->hungry = "not so much.";
}
else
{
echo "barf, 1 only like cookies!";
}
37
}
$dog = new Dog();
$feeder = new Feeder();
$feeder->feedAnimal ($dog, “broccoli®);

Because $dog is not only a Dog, but also an Animal, the requirement is met. Doggie doesn't like broccoli
(who does?), but that is besides the point. Currently PHP only supports type hinting with objects and arrays.
Note: since PHP 5.2, failing type hinting requirements result in a E_RECOVERABLE_ERROR type error,
not an immediate fatal error.

3.8 Exceptions

PHP 5 introduces the concept of exceptions to PHP. An exception is not an error, an uncaught exception is
(a fatal error).

Using exceptions you will need the following keywords: try, throw and catch. PHP 5 has it's build-in
Exception class, which you can extend.

You can have multiple catch blocks following a try block. PHP will execute the first catch block that matches

the type of the exception thrown. If no exception is thrown or none of the catch declarations match the
thrown exception type, no catch blocks are executed.

class LiarException extends Exception

O
try {
iT($doggy->talk() == "Doggie likes broccoli.")
{
throw new LiarException(
"Doggie is a big fat liar. He only likes cookies."
):
}
else
{

throw new Exception(“Just because we can.");

echo "An exception was thrown, so this will never print...";
3
catch(LiarException $e)
{

echo "Somebody lied about something: {$e->getMessage()}"";
3
catch(Exception $e)
{

echo "Somebody threw an exception: {$e->getMessage()}"";

3.10.1 Object Overloading

If you're coming from a different OO language, the term ‘overloading’ likely has a very different meaning to

you: defining different method with the same name having different signatures. This has nothing to do with

that.

Object overloading in PHP refers to the mechanism where a call to a method or property will ‘overload’ the

call to a different property or method. The call ultimately made can depend on the type of the arguments or
the context.

These magic methods allow you catch calls to methods and properties that haven’t been defined, because
you didn’t know (or didn’t want to specify) the exact name.

The magic methods are executed only if the object doesn’t have the method or property declared.

The following example class uses __set to check if an embedded object does have the property requested,
before creating a new property for the parent object

class DomXml

{
private $_domDoc;
public function __ construct()
{
$this->_domDoc = new DOMDocument() ;
}
private function __ set($name, S$value)
{
if(property_exists($this->_domDoc, $name))
{
$this->_domDoc->$name = $value;
be
else
{
$this->$name = $value;
be
}
3}

An example __call use:

private function __ _call($name, $params)

{

if(method_exists($this->_doc, $name))

{
return call_user_func_array(

aray($this->_doc, $name), $params

DE

}

else

{

throw new DomXmlIException(
"Call to undeclared method "$name™"

$obj = new Example();
$objectCopy = clone $obj;

class Teeth

{
public $colour = “white";
3
class Dog
{
public $teeth;
public function __ construct()
{
$this->teeth = new Teeth();
3
3
$Lassie = new Dog();

$Snoopy = clone $Lassie;
$Snoopy->teeth->colour = “green-”;

echo $Snoopy->teeth->colour . PHP_EOL;
echo $Lassie->teeth->colour . PHP_EOL;

class Dog

{
public $teeth;

public function __ _construct()

{

$this->teeth = new Teeth();

}
public function _ clone()
{
$this->teeth = clone $this->teeth;
b

class Dog
{
function __ toString()
{
return "1 am Dog.";
3
b
$dog = new Dog();
echo $dog;

$dog = new Dog();
echo ""Doggie says: $dog';

class ExampleParent

{
protected $propertyOne = “valuel”;
public $propertyTwo = “value2®;
}
class Example extends ExampleParent
{
private $propertyThree = "value3~";
public function __ construct()
{
echo "Internal iteration of Example:"™ . PHP_EOL;
foreach($this as $property => $value)
{
echo "Property “"$property® => "$value”™ "
PHP_EOL;
be
echo PHP_EOL;
}
37

$example = new Example();

echo "External iteration of Example:"™ . PHP_EOL;

foreach($example as $property => $value)

{
echo "Property “"$property” => “"$value® " . PHP_EOL;

icho PHP_EOL ;

$exampleParent = new ExampleParent();

echo "External iteration of ExampleParent:" . PHP_EOL;
foreach($exampleParent as $property => $value)

{
echo "Property “$property”™ => "$value® " . PHP_EOL;

}

Output:

Internal iteration of Example:
Property “propertyThree® => “value3~
Property “propertyOne® => "valuel”
Property “propertyTwo" => "value2*®

namespace Application::Input::Validate: :PhoneNumber

class Us {

|

$validator = new Application::Input::Validate: :PhoneNumber: :Us($arg) ;

use Application::Input::Validate: :PhoneNumber as PhoneValidators

$validator = new PhoneValidators::Us($arg);

use Framework::Controller::Response: :Http HttpResponse

$response = new HttpResponse();

function __ autoload($className)
{
$file = str_replace("::", DIRECTORY_SEPARATOR, $className) .
l-phpl;
if(!file exists($file))
{
return false;
}
else
{
require_once $file;
}
I

4.2 Late static binding

In PHP 5.2, you can already do this:

abstract class ParentClass

{

public static function foo()
{
echo "blah®;
37
be

class ImplementationClass extends ParentClass

&

ImplementationClass: :foo();

Static methods are inherited. But without late static binding, ParentClass will not be able to invoke any static
methods of ImplementationClass, like in this non-static example:

abstract class ParentClass

{
public function foo()
{
$this->meh();
}
bs
class ImplementationClass extends ParentClass
{
public function meh()
{
echo "blah®;
}

$impl = new ImplementationClass();
$impl->foo();

If we wanted meh to be static, it would be tempting to try this:

abstract class ParentClass
{
public function foo()
{
self::meh();
}
be
class ImplementationClass extends ParentClass
{
public static function meh()
{
echo "blah®;
}
}

ImplementationClass: :foo();

But self refers to the current class scope, ParentClass in this case, so we produce this error:

Fatal error: Call to undefined method ParentClass::meh()

In PHP5.3+, self still points to the current class reference. To make the above scenario possible, a new use
is given to the static keyword:

abstract class ParentClass
{
public static function foo()
{
static::meh();
}
}
class ImplementationClass extends ParentClass
{
public static function meh()
{
echo "blah”;
bs
}
ImplementationClass: :foo();

Above will echo ‘blah’ on PHP5.3+.

But, all is not as simple as it seems. The static keyword doesn’t take inheritance into account, like $this
does. Instead it tries to resolve the correct call.

The following code will fail:

abstract class ParentClass

{
| public static function delegate() |

	Introduction
	Index
	1. The Very Basics
	1.1 A tiny bit of theory
	1.2 Hold on, read this first
	1.3 Absolute basic syntax

	2 Defining how objects should behave
	2.1 Classes
	2.2 Inheritance
	2.3 Constructors
	2.4 Scope Resolution Operator

	2.5 Abstract Classes
	3 Beyond the Absolute Basics
	3.1 Object Handles
	3.2 Interfaces
	3.3 Autoload
	3.4 Destructors
	3.5 Visibility
	3.6 Class Constants
	3.7 Type Hinting
	3.8 Exceptions
	3.9 The Final Keyword
	3.10 More Magic Methods

	4. Hot off The Press Features
	4.1 Namespaces
	4.2 Late static binding
	5 In conclusion

